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Background — The University of Wisconsin Cooperative Institute for Meteorological Satellite
Studies (UW-CIMSS) conducted a ground-truth assessment of the WVSS-II systems being flown
on UPS aircraft at Louisville KY for an approximately 2 week period from 13-24 June 2005.
This report is intended to provide an early look at the general results of the experiment, in terms
of the success of the planned observing strategies and some first intercomparison results.

Observing Systems Available for WVSS-II Validation - All non-aircraft observations were made
from a site on the Kentucky Air National Guard (ANG) facility immediately adjacent to the
Louisville airport. Observations were taken from the portable “AERIbago” vehicle 24 hours/day
during weekdays throughout the full period. Primary observational systems included a portable
surface station reporting temperature, dewpoint temperature and wind, a NWS standard
Ceilometer, a GPS receiver for use in calculating total precipitable water (GPS-TPW), an upward
looking AERI infrared interferometer to measure boundary layer temperature and moisture at 10
minute temporal resolution, and a Vaisala RS-92 GPS rawinsonde system.

Most of the automated observing systems provided data continuously throughout the two-week
co-location experiment, with the exception of the GPS-TPW system, which experienced several
outages due to temporary power failures at the ANG facilities.

All data taken by the UW-CIMSS systems have been archived at UW-CIMSS for future use.
These data are available at: ftp://ftp.ssec.wisc.edu/validation/exper/wvssii/

A full set of aircraft data has also been collected from the FSL. MADIS data retrieval system for
use in the UW-CIMSS assessment.

Status of Rawinsonde vs. Aircraft Co-location Data - The most critical observations for this
initial report of results were the rawinsonde reports. Three rawinsonde launches were scheduled
for each night, one immediately before the majority of the UPS arrivals at about 0240 UTC,
another between the rush of descents and ascents at about 0645 UTC and a third after the
majority of departures at about 0915 UTC. Exceptions were made on Mondays and Fridays,
when scheduling of WVSS-II equipped aircraft by UPS supported only 2 launches on several
occasions. The schedule was designed in part to focus on ascents, since there are known
problems with descent reports, as discussed later.

A total 27 of the 28 attempted launches were successful, with the one unsuccessful attempt due
to equipment failure. Thirteen rawinsondes were launched during the first week and 14 during
the second. The rawinsonde data were sent in real time to FSL for display on their ACARS
display web site. On a typical day, about 5-10 aircraft co-locations were available, but not all
fell within the tightest time window used in this report.



Constraints of initial assessment - Comparisons of the WVSS-II data with the rawinsonde
standard were limited by the following constraints.

1 — Prior to the experiment, an occasional problem was identified in the WVSS-II instrument.
This problem produced erroneous reporting in areas of high humidity and clouds, but only in
descent. This problem will be addressed through a future hardware change. However, since the
objective of the experiment was to assess the difference in good quality reports made by both the
aircraft and rawinsonde, it was decided to focus the comparison on rawinsonde co-locations with
aircraft ascents.

2 — A second problem was also discovered in some of the early installed WVSS-II units in which
a small amount of moisture was entering the laser sensing unit and thereby biasing the moisture
reports upward. This bias was especially apparent in areas of extremely low mixing ratio
(typically at higher altitude and colder temperatures). This problem was addressed in some of
the units that were installed later and are available for some of the experiment, but was not
corrected for all units before the end of the experiment. As such, could be calculated either by
a) excluding data from sensors with known and very large biases and/or 2) limiting assessments
of WVSS-II performance to regions where the observed mixing ratio was greater than 2 g/kg.
Option 2 was used for this report.

3 — Since WVSS-II sensors continued to be installed on the UPS aircraft throughout the
experiment, the number of available matches and mix of reporting units daily varied during the
test period.

4 — A number of the aircraft had biases in their temperature sensors, which would cause errors in
calculated Relative Humidity. Therefore, initial assessments of moisture were made in terms of
the primary WVSS-II water vapor observation, which is mixing ratio (as reflected in specific
humidity).

5 — It should also be noted that a deficiency was noted in the way the WVSS-II observations are
being reported to the ground. Reports of less than 10 g/kg had precision of at least 0.1 g/kg,
while reports greater than 10 g/kg had precisions of only 1 g/kg. As such, the accuracy of the
assessments had limits that varied from +/-0.05k/kg for reports between 0 and 10 k/kg to +/-
0.5g/kg for values above 10 g/kg. This factor will erroneously amplify the variability in the co-
location results. Attempts will be made to stratify the assessments statistics to reflect these
differences in the future.



Conventions for identifying aircraft/rawinsonde co-locations - Based upon experience gained
in the 3 previous aircraft/rawinsonde co-location tests performed by UW-CIMSS, all co-location
data used for the initial assessment were limited to time and space windows of +/- 60 minutes
and 50 kilometers. This was done to minimize the impact of transient weather features in the
area, such as frontal passages, while assuring that an adequate number of reports were available
for statistical calculations.

When the above conditions are applied to the full set of available data, a total of 49 ascending

rawinsonde/W VSS-II matches were still available for comparison (from aircraft ascents only).
The matches included data from 13 (there were 16 w/ matches, but 3 of them were descending
only) rawinsonde releases and up to 50% of the approximately 25 aircraft that could have been
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reporting aircraft, but also between the aircraft and the rawinsonde report. In this case, the
majority of the reports reflected the rawinsonde values very closely. However, two of the
aircraft reports differed from the rawinsonde data by from 1 to 2 g/kg. It should be noted that
one of these ‘outlying’ reports was taken significantly before the rawinsonde launch.

Summary Statistics for the full period - Weighted average rawinsonde reports were compiled
for the full test period. The averages were weighted according to the number of aircraft matches
that occurred for each rawinsonde launch. In this way, an individual sounding during an extreme
weather event but with only 1 aircraft match-up would have less influence on the average than a
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Specific Humidity bias results show very small, though generally positive biases (0.1 to 0.2 g/kg)
from the surface up to nearly 800 hPa. Above that level, the bias increases to between 0.2 and
0.4 g/kg.  Analysis of this bi-modal bias structure has not yet been undertaken.

The Root Mean Square (RMS) fits of the aircraft data to the rawinsonde reports showed
variability of about 1 g/kg from the surface to 800 hPa. Above 800 hPa, RMS values increase to
between 1 and 1.5 g/kg, due in large part to the increased biases found in the region.
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If the mixing ratio intercomparisons were further partitioned between WVSS-II values less than
10 g/kg and those above 10 g/kg, the detrimental effort of the change in data reporting precision
from 0.1 g/kg to1.0 g/kg (which occurs at 10 k/kg) becomes readily apparent. Although only a
few reports fall within the larger category during the Louisville test (and the RMS and SD
statistics may therefore not be entirely representative), a degradation in bias (increasing to nearly
1 g/kg) and the near doubling of the low-level RMS and SD are readily apparent for values
greater than 10 g/kg.
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For reported values less than 10 g/kg values (where reporting precision is greater and where
abundant match-ups were available), the RMS fits of the aircraft data to the rawinsonde reports
were reduced by nearly 50% to about 0.5 g/kg from the surface to 800 hPa, instead of the bulk
values of nearly 1 g/kg. Similarly, above 800 hPa, RMS values were closer to 1.0 g/kg. The
biases also changed slightly at lower levels, with marginally negative biases below 850 hPa. As
such, mixing ratio values reported using 0.1 g/kg precision showed that the WVSS-II systems
performed well within NWS and WMO requirements during these tests.

Suggestion for alternative compression for air-to-ground data communication — As noted
earlier, the convention used to transmit the WV SS-II data from aircraft to ground limits the
precision of the reports to only 2 digits. In practice, however, a total of three digits are available
for the data transmission, two for the mantissa of the report and 1 for the power of 10 (assumed
to always be negative). Part of the reasoning for the decision to use this type of format was
probably related to desires both to reduce communication costs by limiting the number of digits
added to the weather data messages, and to obtain reports of very low moisture amounts.

Unfortunately, the process of rounding or truncating data to the nearest two digit integer can add
substantial error to the reports, as has been noted above. Additionally, this error varies according
to the value of the reported humidity itself. For example, observations of both 10.6 and 11.4
g/kg would be reported as 11 g/kg, even though the measurements themselves were separated by
0.8 k/kg. Theoretically, this should add between 0.25 and 0.30 g/kg to the RMS comparisons.
Expressed in another ways, if the saturation mixing ratio in this case was 12k/kg, the transmitted
11 g/kg data would convert to 91.6%, instead of showing relative humidity values of 88.3% and
95% respectively. This range of values of +/- 3.3% has an effect equivalent to a random



temperature error of almost 0.5°C. By contrast, if the report had been 9.5 k/kg with the same
saturation value, the range of possible observations would have only varied from 9.45 to 9.55
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A more detailed working report and proposal
are being circulated within the WVSS-II
community, the NWS and the WMO at this time. A complete report will be prepared upon
approval of the approved new reporting scheme.

Summary — This report presents a summary of the accuracy of mixing ratio observations made
by WVSS-II equipped commercial aircraft during a two-week period in June 2005. The results
show a small, but slightly positive bias in the boundary layer, with slightly larger values above.
RMS fits average around 1 g/kg. Part of the variability may be the result of encoding
conventions used in constructing the transmitted reports for higher moisture values. When
statistics are calculated only for reports made with at least 0.1 g/kg precision, the RMS accuracy
of the reports increases to between 0.5 and 1.0 g/kg. This accuracy is well within NWS and
WMO requirements. As a result of these tests, a formal proposal for changing the reporting
precision scheme is forthcoming.

Formal presentations of these results have been made at the 2005/2006 AMS annual meetings,
the spring 2006 TAMDAR review and the 2006 Tropospheric Profiling conference. Copies of
these presentations are available upon request. The authors would like to acknowledge NOAA
Grant 144PH46 and Dr. David Helms for support needed to conduct this study.



Appendix - Comparison for Aircraft Temperature and Specific Humidity data with Co-located
rawinsonde data for each rawinsonde launch.
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